Our hosting provider is investigating network issues. We apologize for the inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

TRAPPII subunits are required for the specificity switch of a Ypt-Rab GEF.

Nature cell biology | Nov 1, 2006

Ypt-Rab GTPases are key regulators of the various steps of intracellular trafficking. Guanine nucleotide-exchange factors (GEFs) regulate the conversion of Ypt-Rabs to the GTP-bound state, in which they interact with effectors that mediate all the known aspects of vesicular transport. An interesting possibility is that Ypt-Rabs coordinate separate steps of the transport pathways. The conserved modular complex TRAPP is a GEF for the Golgi gatekeepers Ypt1 and Ypt31/32 (Refs 5-7). However, it is not known how Golgi entry and exit are coordinated. TRAPP comes in two configurations: the seven-subunit TRAPPI is required for endoplasmic reticulum-to-Golgi transport, whereas the ten-subunit TRAPPII functions in late Golgi. The two essential TRAPPII-specific subunits Trs120 and Trs130 have been identified as Ypt31/32 genetic interactors. Here, we show that they are required for switching the GEF specificity of TRAPP from Ypt1 to Ypt31. Moreover, a trs130ts mutation confers opposite effects on the intracellular localization of these GTPases. We suggest that the Trs120-Trs130 subcomplex joins TRAPP in the late Golgi to switch its GEF activity from Ypt1 to Ypt31/32. Such a 'switchable' GEF could ensure sequential activation of these Ypts, thereby coordinating Golgi entry and exit.

Pubmed ID: 17041589 RIS Download

Mesh terms: Biological Transport | Endoplasmic Reticulum | Golgi Apparatus | Guanine Nucleotide Exchange Factors | Guanosine Diphosphate | Membrane Proteins | Microscopy, Fluorescence | Models, Biological | Mutation | Protein Binding | Protein Subunits | Qc-SNARE Proteins | SNARE Proteins | Saccharomyces cerevisiae Proteins | Time Factors | Vesicular Transport Proteins | rab GTP-Binding Proteins

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, Id: GM-45444

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.