Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Neurotrophin-3 ameliorates sensory-motor deficits in Er81-deficient mice.

Developmental dynamics : an official publication of the American Association of Anatomists | 2006

Two factors, the ETS transcription factor ER81 and skeletal muscle-derived neurotrophin-3 (NT3), are essential for the formation of muscle spindles and the function of spindle afferent-motoneuron synapses in the spinal cord. Spindles either degenerate completely or are abnormal, and spindle afferents fail to project to spinal motoneurons in Er81 null mice; however, the interactions between ER81 and NT3 during the processes of afferent neuron and muscle spindle development are poorly understood. To examine if overexpression of NT3 in muscle rescues spindles and afferent-motoneuron connectivity in the absence of ER81, we generated myoNT3;Er81(-/-) double-mutant mice that selectively overexpress NT3 in muscle in the absence of ER81. Spindle reflex arcs in myoNT3;Er81(-/-) mutants differed greatly from Er81 null mice. Muscle spindle densities were greater and more afferents projected into the ventral spinal cord in myoNT3;Er81(-/-) mice. Spindles of myoNT3;Er81(-/-) muscles responded normally to repetitive muscle taps, and the monosynaptic inputs from Ia afferents to motoneurons, grossly reduced in Er81(-/-) mutants, were restored to wild-type levels in myoNT3;Er81(-/-) mice. Thus, an excess of muscle-derived NT3 reverses deficits in spindle numbers and afferent function induced by the absence of ER81. We conclude that muscle-derived NT3 can modulate spindle density and afferent-motoneuron connectivity independently of ER81.

Pubmed ID: 17013886 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NINDS NIH HHS, United States
    Id: R01 NS024373-16
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS024373-19
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS024373-18
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS024373
  • Agency: NINDS NIH HHS, United States
    Id: R01 NS024373-17

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Neurolucida (tool)

RRID:SCR_001775

Neurolucida is advanced scientific software for brain mapping, neuron reconstruction, anatomical mapping, and morphometry. Since its debut more than 20 years ago, Neurolucida has continued to evolve and has become the worldwide gold-standard for neuron reconstruction and 3D mapping. Neurolucida has the flexibility to handle data in many formats: using live images from digital or video cameras; stored image sets from confocal microscopes, electron microscopes, and scanning tomographic sources, or through the microscope oculars using the patented LucividTM. Neurolucida controls a motorized XYZ stage for integrated navigation through tissue sections, allowing for sophisticated analysis from many fields-of-view. Neurolucidas Serial Section Manager integrates unlimited sections into a single data file, maintaining each section in aligned 3D space for full quantitative analysis. Neurolucidas neuron tracing capabilities include 3D measurement and reconstruction of branching processes. Neurolucida also features sophisticated tools for mapping delineate and map anatomical regions for detailed morphometric analyses. Neurolucida uses advanced computer-controlled microscopy techniques to obtain accurate results and speed your work. Plug-in modules are available for confocal and MRI analysis, 3D solid modeling, and virtual slide creation. The user-friendly interface gives you rapid results, allowing you to acquire data and capture the full 3D extent of neurons and brain regions. You can reconstruct neurons or create 3D serial reconstructions directly from slides or acquired images, and Neurolucida offers full microscope control for brightfield, fluorescent, and confocal microscopes. Its added compatibility with 64-bit Microsoft Vista enables reconstructions with even larger images, image stacks, and virtual slides. Adding the Solid Modeling Module allows you to rotate and view your reconstructions in real time. Neurolucida is available in two separate versions Standard and Workstation. The Standard version enables control of microscope hardware, whereas the Workstation version is used for offline analysis away from the microscope. Neurolucida provides quantitative analysis with results presented in graphical or spreadsheet format exportable to Microsoft Excel. Overall, features include: - Tracing Neurons - Anatomical Mapping - Image Processing and Analysis Features - Editing - Morphometric Analysis - Hardware Integration - Cell Analysis - Visualization Features Sponsors: Neurolucida is supported by MBF Bioscience.

View all literature mentions