Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Human EML4, a novel member of the EMAP family, is essential for microtubule formation.

http://www.ncbi.nlm.nih.gov/pubmed/16890222

Human EML4 (EMAP-like protein 4) is a novel microtubule-associated WD-repeat protein of 120 kDa molecular weight, which is classified as belonging to the conserved family of EMAP-like proteins. Cosedimentation assays demonstrated that EML4 associates with in vitro polymerized microtubules. Correspondingly, immunofluorescence stainings and transient expression of EGFP-labeled EML4 revealed a complete colocalization of EML4 with the interphase microtubule array of HeLa cells. We present evidence that the amino-terminal portion of EML4 (amino acids 1-249) is essential for the association with microtubules. Immunoprecipitation experiments revealed that EML4 is hyperphosphorylated on serine/threonine residues during mitosis. In addition, immunofluorescence stainings demonstrated that hyperphosphorylated EML4 is associated with the mitotic spindle, suggesting that the function of EML4 is regulated by phosphorylation. siRNA-mediated knockdown of EML4 in HeLa cells led to a significant decrease in the number of cells. In no case mitotic figures could be observed in EML4 negative HeLa cells. Additionally, we observed a significant reduction of the proliferation rate and the uptake of radioactive [3H]-thymidine as a result of EML4 silencing. Most importantly, EML4 negative cells showed a completely modified microtubule network, indicating that EML4 is necessary for correct microtubule formation.

Pubmed ID: 16890222 RIS Download

Mesh terms: Animals | Cell Cycle | Cell Cycle Proteins | Cell Line | Cell Line, Tumor | Cell Survival | Green Fluorescent Proteins | HeLa Cells | Humans | Immunoprecipitation | Mice | Mice, Inbred BALB C | Microtubule-Associated Proteins | Microtubules | Phosphorylation | RNA Interference | RNA, Small Interfering | Serine Endopeptidases | Transfection