Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Effects of transgenic expression of HIV-1 Vpr on lipid and energy metabolism in mice.

HIV infection is associated with abnormal lipid metabolism, body fat redistribution, and altered energy expenditure. The pathogenesis of these complex abnormalities is unclear. Viral protein R (Vpr), an HIV-1 accessory protein, can regulate gene transcription mediated by the glucocorticoid receptor and peroxisome proliferator-activated receptor-gamma and affect mitochondrial function in vitro. To test the hypothesis that expression of Vpr in liver and adipocytes can alter lipid metabolism in vivo, we engineered mice to express Vpr under control of the phosphoenolpyruvate carboxykinase promoter in a tissue-specific and inducible manner and investigated the effects of dietary fat, indinavir, and dexamethasone on energy metabolism and body composition. The transgenic mice expressed Vpr mRNA in white and brown adipose tissues and liver and immunoaffinity capillary electrophoresis revealed that they had free Vpr protein in the plasma. Compared with wild-type (WT) animals, Vpr mice had lower plasma triglyceride levels after 6 wk (P < 0.05) but not after 10 wk of a high-fat diet and lower plasma cholesterol levels after 10 wk of high-fat diet (P < 0.05). Treatment with dexamethasone obviated group differences, whereas indinavir had no significant independent effect on lipids. In the fasted state, Vpr mice had a higher respiratory quotient than WT mice (P < 0.05). These data provide the first in vivo evidence that HIV-1 Vpr expressed at low levels in adipose tissues and liver can 1) circulate in the blood, 2) regulate lipid and fatty acid metabolism, and 3) alter fuel selection for oxidation in the fasted state.

Pubmed ID: 16882932 RIS Download

Mesh terms: Adipose Tissue | Animals | Calorimetry | Diet | Energy Metabolism | Female | Gene Expression | Gene Products, vpr | HIV-1 | Kidney | Lipid Metabolism | Liver | Male | Mice | Mice, Inbred Strains | Mice, Transgenic | vpr Gene Products, Human Immunodeficiency Virus

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, Id: R01 DK059537
  • Agency: NIDDK NIH HHS, Id: R01-DK-59537
  • Agency: Intramural NIH HHS, Id:

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.