Our hosting provider will be performing UPS maintenance on Tuesday, Oct 25, 2016 between 8 AM and 5 PM PDT. SciCrunch searching services will be down during this time.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Neutrophils from p40phox-/- mice exhibit severe defects in NADPH oxidase regulation and oxidant-dependent bacterial killing.


The generation of reactive oxygen species (ROS) by the reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex plays a critical role in the antimicrobial functions of the phagocytic cells of the immune system. The catalytic core of this oxidase consists of a complex between gp91(phox), p22(phox), p47(phox), p67(phox), p40(phox), and rac-2. Mutations in each of the phox components, except p40(phox), have been described in cases of chronic granulomatous disease (CGD), defining their essential role in oxidase function. We sought to establish the role of p40(phox) by investigating the NADPH oxidase responses of neutrophils isolated from p40(phox-/-) mice. In the absence of p40(phox), the expression of p67(phox) is reduced by approximately 55% and oxidase responses to tumor necrosis factor alpha/fibrinogen, immunoglobulin G latex beads, Staphylococcus aureus, formyl-methionyl-leucyl-phenylalanine, and zymosan were reduced by approximately 97, 85, 84, 75, and 30%, respectively. The defect in ROS production by p40(phox-/-) neutrophils in response to S. aureus translated into a severe, CGD-like defect in the killing of this organism both in vitro and in vivo, defining p40(phox) as an essential component in bacterial killing.

Pubmed ID: 16880254


  • Ellson CD
  • Davidson K
  • Ferguson GJ
  • O'Connor R
  • Stephens LR
  • Hawkins PT


The Journal of experimental medicine

Publication Data

August 7, 2006

Associated Grants

  • Agency: Biotechnology and Biological Sciences Research Council, Id: BBS/B/01979

Mesh Terms

  • Animals
  • Bacterial Infections
  • Blood Cell Count
  • Cell Adhesion
  • Cell Differentiation
  • Fibrinogen
  • Gene Expression Regulation, Enzymologic
  • Mice
  • N-Formylmethionine Leucyl-Phenylalanine
  • NADPH Oxidase
  • Neutrophils
  • Oxidants
  • Phagocytosis
  • Phosphoproteins
  • Reactive Oxygen Species
  • Signal Transduction
  • Solubility
  • Staphylococcus aureus
  • Tumor Necrosis Factor-alpha