Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A luminal surveillance complex that selects misfolded glycoproteins for ER-associated degradation.

Cell | 2006

How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.

Pubmed ID: 16873065 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Protein Prospector (tool)

RRID:SCR_014558

A package of over twenty mass spectrometry-based tools primarily geared toward proteomic data analysis and database mining. It can be run from the command line, but is primarily used through a web browser, and there is a public website that allows anyone to use the software without local installation. Tandem mass spectrometry analysis tools are used for database searching and identification of peptides, including post-translationally modified peptides and cross-linked peptides. Support for isotope and label-free quantification from this type of data is provided. MS-Viewer software allows sharing and displaying of annotated spectra from many different tandem mass spectrometry data analysis packages. Other tools include software for analyzing peptide mass fingerprinting data (MS-Fit); prediction of theoretical fragmentation of peptides (MS-Product); theoretical chemical or enzymatic digestion of proteins (MS-Digest); and theoretical modeling of the isotope distribution of any chemical, including peptides (MS-Isotope). Searches using amino acid sequence can be used to identify homologous peptides in a database (MS-Pattern); the use of the combination of amino acid sequence and masses can be used for homologous peptide and protein identification using MS-Homology. Tandem mass spectrometry peak list files can be filtered for the presence of certain peaks or neutral losses using MS-Filter. Given a list of proteins, MS-Bridge can report all potential cross-linked peptide combinations of a specified mass. Given a precursor peptide mass and information about known amino acid presence, absence, or modifications, MS-Comp can report all amino acid combinations that could lead to the observed mass.

View all literature mentions