Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genetic regulation of unsaturated fatty acid composition in C. elegans.

PLoS genetics | Jul 14, 2006

Delta-9 desaturases, also known as stearoyl-CoA desaturases, are lipogenic enzymes responsible for the generation of vital components of membranes and energy storage molecules. We have identified a novel nuclear hormone receptor, NHR-80, that regulates delta-9 desaturase gene expression in Caenorhabditis elegans. Here we describe fatty acid compositions, lifespans, and gene expression studies of strains carrying mutations in nhr-80 and in the three genes encoding delta-9 desaturases, fat-5, fat-6, and fat-7. The delta-9 desaturase single mutants display only subtle changes in fatty acid composition and no other visible phenotypes, yet the fat-5;fat-6;fat-7 triple mutant is lethal, revealing that endogenous production of monounsaturated fatty acids is essential for survival. In the absence of FAT-6 or FAT-7, the expression of the remaining desaturases increases, and this ability to compensate depends on NHR-80. We conclude that, like mammals, C. elegans requires adequate synthesis of unsaturated fatty acids and maintains complex regulation of the delta-9 desaturases to achieve optimal fatty acid composition.

Pubmed ID: 16839188 RIS Download

Mesh terms: Animals | Caenorhabditis elegans | Fatty Acids, Unsaturated | Gene Expression Regulation | Green Fluorescent Proteins | Mutation | Stearoyl-CoA Desaturase | Substrate Specificity

Research resources used in this publication

None found

Research tools detected in this publication

Data used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, Id: R01 DK074114
  • Agency: NIDDK NIH HHS, Id: R01 DK074114-01
  • Agency: NIDDK NIH HHS, Id: R01-DK074114

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Integrated DNA Technologies OligoAnalyzer

Web-based application for analyzing oligonucleotides. Analysis proceeds after the sequence has been entered and the calculations modified based on target type, oligo concentration, sodium ion concentration, magnesium ion concentration, and dNTP concentration.

tool

View all literature mentions

GenBank

NIH genetic sequence database that provides an annotated collection of all publicly available DNA sequences for almost 280 000 formally described species. (Jan 2014) These sequences are obtained primarily through submissions from individual laboratories and batch submissions from large-scale sequencing projects, including whole-genome shotgun (WGS) and environmental sampling projects. Most submissions are made using the web-based BankIt or standalone Sequin programs, and GenBank staff assigns accession numbers upon data receipt. It is part of the International Nucleotide Sequence Database Collaboration and daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Entrez retrieval system, which integrates data from the major DNA and protein sequence databases along with taxonomy, genome, mapping, protein structure and domain information, and the biomedical journal literature via PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP.

tool

View all literature mentions