Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin.

Cell | Jun 16, 2006

http://www.ncbi.nlm.nih.gov/pubmed/16777606

Cleavage of huntingtin (htt) has been characterized in vitro, and accumulation of caspase cleavage fragments represents an early pathological change in brains of Huntington's disease (HD) patients. However, the relationship between htt proteolysis and the pathogenesis of HD is unknown. To determine whether caspase cleavage of htt is a key event in the neuronal dysfunction and selective neurodegeneration in HD, we generated YAC mice expressing caspase-3- and caspase-6-resistant mutant htt. Mice expressing mutant htt, resistant to cleavage by caspase-6 but not caspase-3, maintain normal neuronal function and do not develop striatal neurodegeneration. Furthermore, caspase-6-resistant mutant htt mice are protected against neurotoxicity induced by multiple stressors including NMDA, quinolinic acid (QA), and staurosporine. These results are consistent with proteolysis of htt at the caspase-6 cleavage site being an important event in mediating neuronal dysfunction and neurodegeneration and highlight the significant role of htt proteolysis and excitotoxicity in HD.

Pubmed ID: 16777606 RIS Download

Mesh terms: Active Transport, Cell Nucleus | Animals | Brain | Caspase 6 | Caspases | Cell Nucleus | Humans | Huntington Disease | Hydrolysis | Mice | Mice, Transgenic | Mutation | N-Methylaspartate | Nerve Degeneration | Nerve Tissue Proteins | Neurons | Nuclear Proteins | Quinolinic Acid | Staurosporine

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.