Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A comparative analysis of shotgun-cloning and tagged-random amplification-cloning of chromatin immunoprecipitation-isolated genome fragments.

Biochemical and biophysical research communications | 2006

The cloning of transcription factor antibody-immunoprecipitated genomic fragments from chromatin immunoprecipitation (ChIP) experiments is a technically challenging procedure, especially when the input genomic DNA is isolated from whole tissues (in vivo) rather than cultured cells. Here we adapt a technique known as Tagged-Random PCR (T-PCR) to amplify ChIP-immunoprecipitated DNA from mouse embryonic tissue prior to cloning. Importantly, we then compare this technique with tandem shotgun-cloning experiments in terms of its capacity to identify target genes. We find that T-PCR dramatically increases the efficiency of cloning ChIP fragments without distortion of the relative location of cloned fragments to putative target genes. Thus, T-PCR is a simple procedure which greatly enhances the efficiency of cloning tissue-derived ChIP fragments.

Pubmed ID: 16762317 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.