We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Required, tissue-specific roles for Fgf8 in outflow tract formation and remodeling.

Fibroblast growth factor 8 (Fgf8) is a secreted signaling protein expressed in numerous temporospatial domains that are potentially relevant to cardiovascular development. However, the pathogenesis of complex cardiac and outflow tract defects observed in Fgf8-deficient mice, and the specific source(s) of Fgf8 required for outflow tract formation and subsequent remodeling are unknown. A detailed examination of the timing and location of Fgf8 production revealed previously unappreciated expression in a subset of primary heart field cells; Fgf8 is also expressed throughout the anterior heart field (AHF) mesoderm and in pharyngeal endoderm at the crescent and early somite stages. We used conditional mutagenesis to examine the requirements for Fgf8 function in these different expression domains during heart and outflow tract morphogenesis. Formation of the primary heart tube and the addition of right ventricular and outflow tract myocardium depend on autocrine Fgf8 signaling in cardiac crescent mesoderm. Loss of Fgf8 in this domain resulted in decreased expression of the Fgf8 target gene Erm, and aberrant production of Isl1 and its target Mef2c in the anterior heart field, thus linking Fgf8 signaling with transcription factor networks that regulate survival and proliferation of the anterior heart field. We further found that mesodermal- and endodermal-derived Fgf8 perform specific functions during outflow tract remodeling: mesodermal Fgf8 is required for correct alignment of the outflow tract and ventricles, whereas activity of Fgf8 emanating from pharyngeal endoderm regulates outflow tract septation. These findings provide a novel insight into how the formation and remodeling of primary and anterior heart field-derived structures rely on Fgf8 signals from discrete temporospatial domains.

Pubmed ID: 16720879 RIS Download

Mesh terms: Animals | Basic Helix-Loop-Helix Transcription Factors | Cardiovascular Abnormalities | Cell Death | Cell Proliferation | Fibroblast Growth Factor 8 | Gene Expression Regulation, Developmental | Genes, Reporter | Heart | Homeodomain Proteins | In Situ Hybridization | LIM-Homeodomain Proteins | Mesoderm | Mice | Morphogenesis | Nerve Tissue Proteins | Pharynx | Receptor, Fibroblast Growth Factor, Type 1 | Signal Transduction | T-Box Domain Proteins | Transcription Factors

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NICHD NIH HHS, Id: R01 HD044157
  • Agency: NICHD NIH HHS, Id: R01HD044157

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.