• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation.

Erythroid progenitors differentiate in erythroblastic islands, bone marrow niches composed of erythroblasts surrounding a central macrophage. Evidence suggests that within islands adhesive interactions regulate erythropoiesis and apoptosis. We are exploring whether erythroid intercellular adhesion molecule 4 (ICAM-4), an immunoglobulin superfamily member, participates in island formation. Earlier, we identified alpha(V) integrins as ICAM-4 counterreceptors. Because macrophages express alpha(V), ICAM-4 potentially mediates island attachments. To test this, we generated ICAM-4 knock-out mice and developed quantitative, live cell techniques for harvesting intact islands and for re-forming islands in vitro. We observed a 47% decrease in islands reconstituted from ICAM-4 null marrow compared to wild-type marrow. We also found a striking decrease in islands formed in vivo in knock-out mice. Further, peptides that block ICAM-4/alpha(V) adhesion produced a 53% to 57% decrease in reconstituted islands, strongly suggesting that ICAM-4 binding to macrophage alpha(V) functions in island integrity. Importantly, we documented that alpha(V) integrin is expressed in macrophages isolated from erythroblastic islands. Collectively, these data provide convincing evidence that ICAM-4 is critical in erythroblastic island formation via ICAM-4/alpha(V) adhesion and also demonstrate that the novel experimental strategies we developed will be valuable in exploring molecular mechanisms of erythroblastic island formation and their functional role in regulating erythropoiesis.

Pubmed ID: 16690966