• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications.

Covalent histone post-translational modifications such as acetylation, methylation, phosphorylation, and ubiquitylation play pivotal roles in regulating many cellular processes, including transcription, response to DNA damage, and epigenetic control. Although positive-acting post-translational modifications have been studied in Saccharomyces cerevisiae, histone modifications that are associated with transcriptional repression have not been shown to occur in this yeast. Here, we provide evidence that histone sumoylation negatively regulates transcription in S. cerevisiae. We show that all four core histones are sumoylated and identify specific sites of sumoylation in histones H2A, H2B, and H4. We demonstrate that histone sumoylation sites are involved directly in transcriptional repression. Further, while histone sumoylation occurs at all loci tested throughout the genome, slightly higher levels occur proximal to telomeres. We observe a dynamic interplay between histone sumoylation and either acetylation or ubiquitylation, where sumoylation serves as a potential block to these activating modifications. These results indicate that sumoylation is the first negative histone modification to be identified in S. cerevisiae and further suggest that sumoylation may serve as a general dynamic mark to oppose transcription.

Pubmed ID: 16598039

Authors

  • Nathan D
  • Ingvarsdottir K
  • Sterner DE
  • Bylebyl GR
  • Dokmanovic M
  • Dorsey JA
  • Whelan KA
  • Krsmanovic M
  • Lane WS
  • Meluh PB
  • Johnson ES
  • Berger SL

Journal

Genes & development

Publication Data

April 15, 2006

Associated Grants

  • Agency: NIGMS NIH HHS, Id: GM55360
  • Agency: NIGMS NIH HHS, Id: GM60464
  • Agency: NIGMS NIH HHS, Id: GM62268
  • Agency: NCRR NIH HHS, Id: RR020839

Mesh Terms

  • Acetylation
  • Amino Acid Sequence
  • Blotting, Western
  • Histones
  • Immunoprecipitation
  • Protein Processing, Post-Translational
  • SUMO-1 Protein
  • Saccharomyces cerevisiae
  • Telomere
  • Ubiquitin