Our hosting provider is investigating network issues. We apologize for the inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

NeuroImage | Jun 1, 2006

Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

Pubmed ID: 16480900 RIS Download

Mesh terms: Aged | Analysis of Variance | Brain | Brain Mapping | Female | Humans | Image Processing, Computer-Assisted | Magnetic Resonance Imaging | Male | Middle Aged | Reference Values | Reproducibility of Results

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIA NIH HHS, Id: AG016570
  • Agency: NCRR NIH HHS, Id: R21 RR019771
  • Agency: NLM NIH HHS, Id: R01 LM005639
  • Agency: Medical Research Council, Id: MRC_G116/143
  • Agency: NIA NIH HHS, Id: U01 AG024904
  • Agency: NIA NIH HHS, Id: U19 AG010483
  • Agency: NIA NIH HHS, Id: R01 AG010897
  • Agency: NIBIB NIH HHS, Id: EB01651
  • Agency: NCRR NIH HHS, Id: RR019771
  • Agency: NIA NIH HHS, Id: P50 AG016570
  • Agency: NLM NIH HHS, Id: LM05639

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.