Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Listeria monocytogenes invades the epithelial junctions at sites of cell extrusion.

PLoS pathogens | 2006

Listeria monocytogenes causes invasive disease by crossing the intestinal epithelial barrier. This process depends on the interaction between the bacterial surface protein Internalin A and the host protein E-cadherin, located below the epithelial tight junctions at the lateral cell-to-cell contacts. We used polarized MDCK cells as a model epithelium to determine how L. monocytogenes breaches the tight junctions to gain access to this basolateral receptor protein. We determined that L. monocytogenes does not actively disrupt the tight junctions, but finds E-cadherin at a morphologically distinct subset of intercellular junctions. We identified these sites as naturally occurring regions where single senescent cells are expelled and detached from the epithelium by extrusion. The surrounding cells reorganize to form a multicellular junction that maintains epithelial continuity. We found that E-cadherin is transiently exposed to the lumenal surface at multicellular junctions during and after cell extrusion, and that L. monocytogenes takes advantage of junctional remodeling to adhere to and subsequently invade the epithelium. In intact epithelial monolayers, an anti-E-cadherin antibody specifically decorates multicellular junctions and blocks L. monocytogenes adhesion. Furthermore, an L. monocytogenes mutant in the Internalin A gene is completely deficient in attachment to the epithelial apical surface and is unable to invade. We hypothesized that L. monocytogenes utilizes analogous extrusion sites for epithelial invasion in vivo. By infecting rabbit ileal loops, we found that the junctions at the cell extrusion zone of villus tips are the specific target for L. monocytogenes adhesion and invasion. Thus, L. monocytogenes exploits the dynamic nature of epithelial renewal and junctional remodeling to breach the intestinal barrier.

Pubmed ID: 16446782 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: P30 DK056339
  • Agency: NIAID NIH HHS, United States
    Id: R01 AI036929
  • Agency: NIAID NIH HHS, United States
    Id: R37 AI036929
  • Agency: NIGMS NIH HHS, United States
    Id: T32 GM007276

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Volocity 3D Image Analysis Software (tool)

RRID:SCR_002668

3D image analysis software to visualize, analyze and validate 3D fluorescence images from a wide range of confocal microscopy, widefield and high content screening systems. It is fully integrated for a seamless user experience.

View all literature mentions

MDCK (tool)

RRID:CVCL_0422

Cell line MDCK is a Spontaneously immortalized cell line with a species of origin Canis lupus familiaris

View all literature mentions