Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Sim1 and Sim2 are required for the correct targeting of mammillary body axons.

The mammillary body (MB), and its axonal projections to the thalamus (mammillothalamic tract, MTT) and the tegmentum (mammillotegmental tract, MTEG), are components of a circuit involved in spatial learning. The bHLH-PAS transcription factors SIM1 and SIM2 are co-expressed in the developing MB. We have found that MB neurons are generated and that they survive at least until E18.5 in embryos lacking both Sim1 and Sim2 (Sim1(-/-);Sim2(-/-)). However, the MTT and MTEG are histologically absent in Sim1(-/-);Sim2(-/-) embryos, and are reduced in embryos lacking Sim1 but bearing one or two copies of Sim2, indicating a contribution of the latter to the development of MB axons. We have generated, by homologous recombination, a null allele of Sim1 (Sim1(tlz)) in which the tau-lacZ fusion gene was introduced, allowing the staining of MB axons. Consistent with the histological studies, lacZ staining showed that the MTT/MTEG is barely detectable in Sim1(tlz/tlz);Sim2(+/-) and Sim1(tlz/tlz);Sim2(-/-) brains. Instead, MB axons are splayed and grow towards the midline. Slit1 and Slit2, which code for secreted molecules that induce the repulsion of ROBO1-producing axons, are expressed in the midline at the level of the MB, whereas Robo1 is expressed in the developing MB. The expression of Rig-1/Robo3, a negative regulator of Slit signalling, is upregulated in the prospective MB of Sim1/Sim2 double mutants, raising the possibility that the growth of mutant MB axons towards the midline is caused by a decreased sensitivity to SLIT. Finally, we found that Sim1 and Sim2 act along compensatory, but not hierarchical, pathways, suggesting that they play similar roles in vivo.

Pubmed ID: 16291793 RIS Download

Mesh terms: Animals | Axons | Basic Helix-Loop-Helix Transcription Factors | Cell Survival | Gene Dosage | Intercellular Signaling Peptides and Proteins | Mammillary Bodies | Membrane Proteins | Mice | Mutation | Nerve Tissue Proteins | Neurons | Receptors, Immunologic | Repressor Proteins | Tegmentum Mesencephali | Thalamus

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.