Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The novel ATP-binding cassette protein ARB1 is a shuttling factor that stimulates 40S and 60S ribosome biogenesis.

ARB1 is an essential yeast protein closely related to members of a subclass of the ATP-binding cassette (ABC) superfamily of proteins that are known to interact with ribosomes and function in protein synthesis or ribosome biogenesis. We show that depletion of ARB1 from Saccharomyces cerevisiae cells leads to a deficit in 18S rRNA and 40S subunits that can be attributed to slower cleavage at the A0, A1, and A2 processing sites in 35S pre-rRNA, delayed processing of 20S rRNA to mature 18S rRNA, and a possible defect in nuclear export of pre-40S subunits. Depletion of ARB1 also delays rRNA processing events in the 60S biogenesis pathway. We further demonstrate that ARB1 shuttles from nucleus to cytoplasm, cosediments with 40S, 60S, and 80S/90S ribosomal species, and is physically associated in vivo with TIF6, LSG1, and other proteins implicated previously in different aspects of 60S or 40S biogenesis. Mutations of conserved ARB1 residues expected to function in ATP hydrolysis were lethal. We propose that ARB1 functions as a mechanochemical ATPase to stimulate multiple steps in the 40S and 60S ribosomal biogenesis pathways.

Pubmed ID: 16260602


  • Dong J
  • Lai R
  • Jennings JL
  • Link AJ
  • Hinnebusch AG


Molecular and cellular biology

Publication Data

November 1, 2005

Associated Grants

  • Agency: NCI NIH HHS, Id: CA098131
  • Agency: NIEHS NIH HHS, Id: ES11993
  • Agency: NIGMS NIH HHS, Id: GM64779
  • Agency: NHLBI NIH HHS, Id: HL68744

Mesh Terms

  • ATP-Binding Cassette Transporters
  • Adenosine Triphosphatases
  • Adenosine Triphosphate
  • Binding Sites
  • Carrier Proteins
  • Cell Nucleus
  • Cytoplasm
  • GTP-Binding Proteins
  • Genotype
  • Green Fluorescent Proteins
  • Hydrolysis
  • Image Processing, Computer-Assisted
  • Intermediate Filament Proteins
  • Models, Genetic
  • Mutation
  • Phosphoproteins
  • Plasmids
  • Protein Binding
  • Protein Structure, Tertiary
  • RNA, Ribosomal
  • RNA, Ribosomal, 18S
  • Ribosomal Proteins
  • Ribosomes
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins