Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Genetic interactions due to constitutive and inducible gene regulation mediated by the unfolded protein response in C. elegans.

PLoS genetics | 2005

The unfolded protein response (UPR) is an adaptive signaling pathway utilized to sense and alleviate the stress of protein folding in the endoplasmic reticulum (ER). In mammals, the UPR is mediated through three proximal sensors PERK/PEK, IRE1, and ATF6. PERK/PEK is a protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 to inhibit protein synthesis. Activation of IRE1 induces splicing of XBP1 mRNA to produce a potent transcription factor. ATF6 is a transmembrane transcription factor that is activated by cleavage upon ER stress. We show that in Caenorhabditis elegans, deletion of either ire-1 or xbp-1 is synthetically lethal with deletion of either atf-6 or pek-1, both producing a developmental arrest at larval stage 2. Therefore, in C. elegans, atf-6 acts synergistically with pek-1 to complement the developmental requirement for ire-1 and xbp-1. Microarray analysis identified inducible UPR (i-UPR) genes, as well as numerous constitutive UPR (c-UPR) genes that require the ER stress transducers during normal development. Although ire-1 and xbp-1 together regulate transcription of most i-UPR genes, they are each required for expression of nonoverlapping sets of c-UPR genes, suggesting that they have distinct functions. Intriguingly, C. elegans atf-6 regulates few i-UPR genes following ER stress, but is required for the expression of many c-UPR genes, indicating its importance during development and homeostasis. In contrast, pek-1 is required for induction of approximately 23% of i-UPR genes but is dispensable for the c-UPR. As pek-1 and atf-6 mainly act through sets of nonoverlapping targets that are different from ire-1 and xbp-1 targets, at least two coordinated responses are required to alleviate ER stress by distinct mechanisms. Finally, our array study identified the liver-specific transcription factor CREBh as a novel UPR gene conserved during metazoan evolution.

Pubmed ID: 16184190 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, United States
    Id: R01 DK042394
  • Agency: NIDDK NIH HHS, United States
    Id: R37 DK042394
  • Agency: NIDDK NIH HHS, United States
    Id: DK42394

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


C. elegans Gene Knockout Consortium (tool)

RRID:SCR_003000

THIS RESOURCE IS NO LONGER IN SERVCE, documented September 2, 2016. The mission of the C. elegans Gene Knockout Consortium is to facilitate genetic research of this important model system through the production of deletion alleles at specified gene targets. We choose targets based on investigator requests. Strains produced by the consortium are freely available with no restrictions to any investigator. At one time, our capacity dictated that we restrict requests to five per lab. This restriction no longer holds. Investigators are encouraged especially to register requests for functionally related groups of genes. Consortium strains are distributed by the C. elegans Genetic Center (CGC). In most cases, when you use the Consortium web site to request an existing allele, your request is forwarded automatically to the CGC. However, if you indicate that an existing allele is not satisfactory for your research, (for whatever reason), you may request that we generate another allele for the same target. Any information generated by the Consortium is entered into the official C. elegans data repository, WormBase.

View all literature mentions

WormBase (tool)

RRID:SCR_003098

Central data repository for nematode biology including complete genomic sequence, gene predictions and orthology assignments from range of related nematodes.Data concerning genetics, genomics and biology of C. elegans and related nematodes. Derived from initial ACeDB database of C. elegans genetic and sequence information, WormBase includes genomic, anatomical and functional information of C. elegans, other Caenorhabditis species and other nematodes. Maintains public FTP site where researchers can find many commonly requested files and datasets, WormBase software and prepackaged databases.

View all literature mentions

RE666 (tool)

RRID:WB-STRAIN:WBStrain00033316

Caenorhabditis elegans with name ire-1(v33) II. from WB.

View all literature mentions

SJ17 (tool)

RRID:WB-STRAIN:WBStrain00034061

Caenorhabditis elegans with name xbp-1(zc12) III; zcIs4 V. from WB.

View all literature mentions

RB545 (tool)

RRID:WB-STRAIN:WBStrain00031350

Caenorhabditis elegans with name pek-1(ok275) X. from WB.

View all literature mentions