Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential coding of hyperalgesia in the human brain: a functional MRI study.

NeuroImage | 2005

Neuropathic pain can be both ongoing or stimulus-induced. Stimulus-induced pain, also known as hyperalgesia, can be differentiated into primary and secondary hyperalgesia. The former results from sensitization of peripheral nociceptive structures, the latter involves sensitization processes within the central nervous system (CNS). Hypersensitivity towards heat stimuli, i.e. thermal hyperalgesia, is a key feature of primary hyperalgesia, whereas secondary hyperalgesia is characterized by hypersensitivity towards mechanical (e.g. pin-prick) stimulation. Using functional magnetic resonance imaging (fMRI), we investigated if brain activation patterns associated with primary and secondary hyperalgesia might differ. Thermal and pin-prick hyperalgesia were induced on the left forearm in 12 healthy subjects by topical capsaicin (2.5%, 30 min) application. Equal pain intensities of both hyperalgesia types were applied during fMRI experiments, based on previous quantitative sensory testing. Simultaneously, subjects had to rate the unpleasantness of stimulus-related pain. Pin-prick hyperalgesia (i.e. subtraction of brain activations during pin-prick stimulation before and after capsaicin exposure) led to activations of primary and secondary somatosensory cortices (S1 and S2), associative-somatosensory cortices, insula and superior and inferior frontal cortices (SFC, IFC). Brain areas activated during thermal hyperalgesia (i.e. subtraction of brain activations during thermal stimulation before and after capsaicin exposure) were S1 and S2, insula, associative-somatosensory cortices, cingulate cortex (GC), SFC, middle frontal cortex (MFC) and IFC. When compared to pin-prick hyperalgesia, thermal hyperalgesia led to an increased activation of bilateral anterior insular cortices, MFC, GC (Brodmann area 24' and 32') and contralateral SFC and IFC, despite equal pain intensities. Interestingly, stronger activations of GC, contralateral MFC and anterior insula significantly correlated to higher ratings of the stimulus-related unpleasantness. We conclude that thermal and mechanical hyperalgesia produce substantially different brain activation patterns. This is linked to different psychophysical properties.

Pubmed ID: 16112876 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Brain Innovation: Home of the BrainVoyager Product Family (tool)

RRID:SCR_006660

Brain Innovation B.V. is developing scientific software in the field of human and animal brain imaging, neural network simulation and computer-based experimental control. Our current major product, BrainVoyager QX, is a commercially available cross-platform neuroimaging tool, which is used in hundreds of labs across the planet. Turbo-BrainVoyager is an easy to use program for real-time data analysis, which allows to observe a subject''s or patient''s brain activity during an ongoing functional MRI scanning session. TMS Neuronavigator provides the hard- and software to navigate a TMS coil to desired anatomical or functionally defined brain regions. We also provide free software products. BrainVoyager Brain Tutor allows to learn about brain areas by clicking on rotatable 3D brain models. StimulDX is a powerful stimulation software based on Microsofts DirectX API, which we will make available for free download in the near future.

View all literature mentions