Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways.

http://www.ncbi.nlm.nih.gov/pubmed/16009940

IFN-alpha/beta plays an essential role in innate immunity against viral and bacterial infection. Among the proteins induced by IFN-alpha/beta are the ubiquitin-like ISG15 protein and its E1- (Ube1L) and E2- (UbcH8) conjugating enzymes, leading to the conjugation of ISG15 to cellular proteins. It is likely that ISG15 conjugation plays an important role in antiviral response because a human virus, influenza B virus, inhibits ISG15 conjugation. However, the biological function of ISG15 modification remains unknown, largely because only a few human ISG15 target proteins have been identified. Here we purify ISG15-modified proteins from IFN-beta-treated human (HeLa) cells by using double-affinity selection and use mass spectroscopy to identify a large number (158) of ISG15 target proteins. Eight of these proteins were subjected to further analysis and verified to be ISG15 modified in IFN-beta-treated cells, increasing the likelihood that most, if not all, targets identified by mass spectroscopy are bona fide ISG15 targets. Several of the targets are IFN-alpha/beta-induced antiviral proteins, including PKR, MxA, HuP56, and RIG-I, providing a rationale for the inhibition of ISG15 conjugation by influenza B virus. Most targets are constitutively expressed proteins that function in diverse cellular pathways, including RNA splicing, chromatin remodeling/polymerase II transcription, cytoskeleton organization and regulation, stress responses, and translation. These results indicate that ISG15 conjugation impacts nuclear as well as cytoplasmic functions. By targeting a wide array of constitutively expressed proteins, ISG15 conjugation greatly extends the repertoire of cellular functions that are affected by IFN-alpha/beta.

Pubmed ID: 16009940 RIS Download

Mesh terms: Antiviral Agents | Cytokines | DEAD-box RNA Helicases | GTP-Binding Proteins | HeLa Cells | Humans | Immunity, Innate | Influenza B virus | Interferon Type I | Mass Spectrometry | Myxovirus Resistance Proteins | RNA Helicases | Ubiquitin-Activating Enzymes | Ubiquitin-Conjugating Enzymes | Ubiquitins | eIF-2 Kinase

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIAID NIH HHS, Id: AI11772
  • Agency: NCI NIH HHS, Id: CA72943
  • Agency: NIGMS NIH HHS, Id: GM67945
  • Agency: NHGRI NIH HHS, Id: HG00041

BioGRID (Data, Interactions)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.