• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production.

Phospholipase C and several inositol polyphosphate kinase (IPK) activities generate a branched ensemble of inositol polyphosphate second messengers that regulate cellular signaling pathways in the nucleus and cytoplasm. Here, we report that mice deficient for Ipk2 (also known as inositol polyphosphate multikinase), an inositol trisphosphate and tetrakisphosphate 6/5/3-kinase active at several places in the inositol metabolic pathways, die around embryonic day 9.5 with multiple morphological defects, including abnormal folding of the neural tube. Metabolic analysis of Ipk2-deficient cells demonstrates that synthesis of the majority of inositol pentakisphosphate, hexakisphosphate and pyrophosphate species are disrupted, although the presence of 10% residual inositol hexakisphosphate indicates the existence of a minor alternative pathway. Agonist induced inositol tris- and bis-phosphate production and calcium release responses are present in homozygous mutant cells, indicating that the observed mouse phenotypes are a result of failure to produce higher inositol polyphosphates. Our data demonstrate that Ipk2 plays a major role in the synthesis of inositol polyphosphate messengers derived from inositol 1,4,5-trisphosphate and uncovers a role for their production in embryogenesis and normal development.

Pubmed ID: 15939867


  • Frederick JP
  • Mattiske D
  • Wofford JA
  • Megosh LC
  • Drake LY
  • Chiou ST
  • Hogan BL
  • York JD


Proceedings of the National Academy of Sciences of the United States of America

Publication Data

June 14, 2005

Associated Grants

  • Agency: NHLBI NIH HHS, Id: HL-55672

Mesh Terms

  • Animals
  • Gene Expression Regulation, Developmental
  • Gene Targeting
  • Genetic Complementation Test
  • Genetic Vectors
  • Mice
  • Phosphotransferases (Alcohol Group Acceptor)
  • Second Messenger Systems
  • Signal Transduction
  • Transfection