Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis.

Developmental cell | May 3, 2005

Chondrocytes and osteoblasts are two primary cell types in the skeletal system that are differentiated from common mesenchymal progenitors. It is believed that osteoblast differentiation is controlled by distinct mechanisms in intramembranous and endochondral ossification. We have found that ectopic canonical Wnt signaling leads to enhanced ossification and suppression of chondrocyte formation. Conversely, genetic inactivation of beta-catenin, an essential component transducing the canonical Wnt signaling, causes ectopic formation of chondrocytes at the expense of osteoblast differentiation during both intramembranous and endochondral ossification. Moreover, inactivation of beta-catenin in mesenchymal progenitor cells in vitro causes chondrocyte differentiation under conditions allowing only osteoblasts to form. Our results demonstrate that beta-catenin is essential in determining whether mesenchymal progenitors will become osteoblasts or chondrocytes regardless of regional locations or ossification mechanisms. Controlling Wnt/beta-catenin signaling is a common molecular mechanism underlying chondrocyte and osteoblast differentiation and specification of intramembranous and endochondral ossification.

Pubmed ID: 15866164 RIS Download

Mesh terms: Animals | Bone Development | Cell Differentiation | Cell Size | Chondrocytes | Chondrogenesis | Cytoskeletal Proteins | Gene Expression Regulation, Developmental | In Situ Hybridization | In Vitro Techniques | Intercellular Signaling Peptides and Proteins | Lac Operon | Mesoderm | Mice | Mice, Transgenic | Models, Biological | Osteoblasts | Osteogenesis | Signal Transduction | Stem Cells | Trans-Activators | Wnt Proteins | beta Catenin

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.