• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Regulation of neuron survival and death by p130 and associated chromatin modifiers.

E2F-mediated gene repression plays a key role in regulation of neuron survival and death. However, the key molecules involved in such regulation and the mechanisms by which they respond to apoptotic stimuli are largely unknown. Here we show that p130 is the predominant Rb family member associated with E2F in neurons, that its major partner for repression of pro-apoptotic genes is E2F4, and that the p130-E2F4 complex recruits the chromatin modifiers HDAC1 and Suv39H1 to promote gene silencing and neuron survival. Apoptotic stimuli induce neuron death by sequentially causing p130 hyperphosphorylation, dissociation of p130-E2F4-Suv39H1-HDAC complexes, altered modification of H3 histone and gene derepression. Experimental suppression of such events blocks neuron death while interference with the synthesis of E2F4 or p130, or with the interaction of E2F4-p130 with chromatin modifiers, induces neuron death. Thus, neuron survival and death are dependent on the integrity of E2F4-p130-HDAC/Suv39H1 complexes.

Pubmed ID: 15769944


  • Liu DX
  • Nath N
  • Chellappan SP
  • Greene LA


Genes & development

Publication Data

March 15, 2005

Associated Grants


Mesh Terms

  • Animals
  • Apoptosis
  • Blotting, Western
  • Cell Fractionation
  • Cell Survival
  • DNA-Binding Proteins
  • E2F4 Transcription Factor
  • Electrophoretic Mobility Shift Assay
  • Gene Silencing
  • Histone Deacetylases
  • Histone-Lysine N-Methyltransferase
  • Immunoprecipitation
  • Luciferases
  • Neurons
  • PC12 Cells
  • Phosphorylation
  • Proteins
  • Rats
  • Retinoblastoma-Like Protein p130
  • Transcription Factors