Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Differential effects of beta 1 and beta 2 subunits on BK channel activity.

The Journal of general physiology | 2005

High conductance, calcium- and voltage-activated potassium (BK) channels are widely expressed in mammals. In some tissues, the biophysical properties of BK channels are highly affected by coexpression of regulatory (beta) subunits. beta1 and beta2 subunits increase apparent channel calcium sensitivity. The beta1 subunit also decreases the voltage sensitivity of the channel and the beta2 subunit produces an N-type inactivation of BK currents. We further characterized the effects of the beta1 and beta2 subunits on the calcium and voltage sensitivity of the channel, analyzing the data in the context of an allosteric model for BK channel activation by calcium and voltage (Horrigan and Aldrich, 2002). In this study, we used a beta2 subunit without its N-type inactivation domain (beta2IR). The results indicate that the beta2IR subunit, like the beta1 subunit, has a small effect on the calcium binding affinity of the channel. Unlike the beta1 subunit, the beta2IR subunit also has no effect on the voltage sensitivity of the channel. The limiting voltage dependence for steady-state channel activation, unrelated to voltage sensor movements, is unaffected by any of the studied beta subunits. The same is observed for the limiting voltage dependence of the deactivation time constant. Thus, the beta1 subunit must affect the voltage sensitivity by altering the function of the voltage sensors of the channel. Both beta subunits reduce the intrinsic equilibrium constant for channel opening (L0). In the allosteric activation model, the reduction of the voltage dependence for the activation of the voltage sensors accounts for most of the macroscopic steady-state effects of the beta1 subunit, including the increase of the apparent calcium sensitivity of the BK channel. All allosteric coupling factors need to be increased in order to explain the observed effects when the alpha subunit is coexpressed with the beta2IR subunit.

Pubmed ID: 15767297 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Genovo (tool)

RRID:SCR_011911

Software for a novel de novo sequence assembler that discovers likely sequence reconstructions under the model.

View all literature mentions