Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms.

The EMBO journal | Mar 9, 2005

http://www.ncbi.nlm.nih.gov/pubmed/15719021

Histone phosphorylation influences transcription, chromosome condensation, DNA repair and apoptosis. Previously, we showed that histone H3 Ser10 phosphorylation (pSer10) by the yeast Snf1 kinase regulates INO1 gene activation in part via Gcn5/SAGA complex-mediated Lys14 acetylation (acLys14). How such chromatin modification patterns develop is largely unexplored. Here we examine the mechanisms surrounding pSer10 at INO1, and at GAL1, which herein is identified as a new regulatory target of Snf1/pSer10. Snf1 behaves as a classic coactivator in its recruitment by DNA-bound activators, and in its role in modifying histones and recruiting TATA-binding protein (TBP). However, one important difference in Snf1 function in vivo at these promoters is that SAGA recruitment at INO1 requires histone phosphorylation via Snf1, whereas at GAL1, SAGA recruitment is independent of histone phosphorylation. In addition, the GAL1 activator physically interacts with both Snf1 and SAGA, whereas the INO1 activator interacts only with Snf1. Thus, at INO1, pSer10's role in recruiting SAGA may substitute for recruitment by DNA-bound activator. Our results emphasize that histone modifications share general functions between promoters, but also acquire distinct roles tailored for promoter-specific requirements.

Pubmed ID: 15719021 RIS Download

Mesh terms: Biological Transport, Active | Cell Cycle Proteins | Galactose | Gene Expression Regulation, Fungal | Genes, Fungal | Histones | Inositol | Models, Biological | Phosphorylation | Promoter Regions, Genetic | Protein-Serine-Threonine Kinases | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Serine | TATA-Box Binding Protein | Transcriptional Activation

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, Id: GM55360
  • Agency: NIGMS NIH HHS, Id: GM56469

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.