Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The relative roles in vivo of Saccharomyces cerevisiae Pol eta, Pol zeta, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer.

Genetics | Feb 25, 2005

http://www.ncbi.nlm.nih.gov/pubmed/15520252

We have investigated the relative roles in vivo of Saccharomyces cerevisiae DNA polymerase eta, DNA polymerase zeta, Rev1 protein, and the DNA polymerase delta subunit, Pol32, in the bypass of an abasic site, T-T (6-4) photoadduct and T-T cis-syn cyclobutane dimer, by transforming strains deleted for RAD30, REV3, REV1, or POL32 with duplex plasmids carrying one of these DNA lesions located within a 28-nucleotide single-stranded region. DNA polymerase eta was found to be involved only rarely in the bypass of the T-T (6-4) photoadduct or the abasic sites in the sequence context used, although, as expected, it was solely responsible for the bypass of the T-T dimer. We argue that DNA polymerase zeta, rather than DNA polymerase delta as previously suggested, is responsible for insertion in bypass events other than those in which polymerase eta performs this function. However, DNA polymerase delta is involved indirectly in mutagenesis, since the strain lacking its Pol32 subunit, known to be deficient in mutagenesis, shows as little bypass of the T-T (6-4) photoadduct or the abasic sites as those deficient in Pol zeta or Rev1. In contrast, bypass of the T-T dimer in the pol32delta strain occurs at the wild-type frequency.

Pubmed ID: 15520252 RIS Download

Mesh terms: Base Sequence | DNA Adducts | DNA Polymerase III | DNA, Fungal | DNA-Directed DNA Polymerase | Fungal Proteins | Genetic Vectors | Kinetics | Mutagenesis | Mutagenesis, Insertional | Mutagens | Mutation | Nucleotidyltransferases | Plasmids | Pyrimidine Dimers | Saccharomyces cerevisiae | Saccharomyces cerevisiae Proteins | Transformation, Genetic

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIGMS NIH HHS, Id: GM60652

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.