Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease.

Human molecular genetics | Dec 15, 2004

http://www.ncbi.nlm.nih.gov/pubmed/15496422

Autosomal dominant polycystic kidney disease (ADPKD) is a major cause of renal failure and is characterized by the formation of many fluid-filled cysts in the kidneys. It is a systemic disorder that is caused by mutations in PKD1 or PKD2. Homozygous inactivation of these genes at the cellular level, by a 'two-hit' mechanism, has been implicated in cyst formation but does not seem to be the sole mechanism for cystogenesis. We have generated a novel mouse model with a hypomorphic Pkd1 allele, Pkd1(nl), harbouring an intronic neomycin-selectable marker. This selection cassette causes aberrant splicing of intron 1, yielding only 13-20% normally spliced Pkd1 transcripts in the majority of homozygous Pkd1(nl) mice. Homozygous Pkd1(nl) mice are viable, showing bilaterally enlarged polycystic kidneys. This is in contrast to homozygous knock-out mice, which are embryonic lethal, and heterozygous knock-out mice that show only a very mild cystic phenotype. In addition, homozygous Pkd1(nl) mice showed dilatations of pancreatic and liver bile ducts, and the mice had cardiovascular abnormalities, pathogenic features similar to the human ADPKD phenotype. Removal of the neomycin selection-cassette restored the phenotype of wild-type mice. These results show that a reduced dosage of Pkd1 is sufficient to initiate cystogenesis and vascular defects and indicate that low Pkd1 gene expression levels can overcome the embryonic lethality seen in Pkd1 knock-out mice. We propose that in patients reduced PKD1 expression of the normal allele below a critical level, due to genetic, environmental or stochastic factors, may lead to cyst formation in the kidneys and other clinical features of ADPKD.

Pubmed ID: 15496422 RIS Download

Mesh terms: Alternative Splicing | Amino Acid Sequence | Animals | Base Sequence | Gene Dosage | Gene Targeting | Humans | Kidney | Mice | Mice, Transgenic | Molecular Sequence Data | Polycystic Kidney Diseases | Proteins | TRPP Cation Channels

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.