Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Semaphorin-plexin signaling guides patterning of the developing vasculature.

Developmental cell | 2004

Major vessels of the vertebrate circulatory system display evolutionarily conserved and reproducible anatomy, but the cues guiding this stereotypic patterning remain obscure. In the nervous system, axonal pathways are shaped by repulsive cues provided by ligands of the semaphorin family that are sensed by migrating neuronal growth cones through plexin receptors. We show that proper blood vessel pathfinding requires the endothelial receptor PlexinD1 and semaphorin signals, and we identify mutations in plexinD1 in the zebrafish vascular patterning mutant out of bounds. These results reveal the fundamental conservation of repulsive patterning mechanisms between axonal migration in the central nervous system and vascular endothelium during angiogenesis.

Pubmed ID: 15239959 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

  • Agency: NHLBI NIH HHS, United States
    Id: R01 HL092263

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Zebrafish Information Network (ZFIN) (tool)

RRID:SCR_002560

Model organism database that serves as central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. Data represented are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations.Serves as primary community database resource for laboratory use of zebrafish. Developed and supports integrated zebrafish genetic, genomic, developmental and physiological information and link this information extensively to corresponding data in other model organism and human databases.

View all literature mentions