Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.

NeuroImage | 2004

The purpose of this experiment was to directly examine the neural mechanisms of attentional control involved in the Simon task as compared to a spatial Stroop task using event-related fMRI. The Simon effect typically refers to the interference people experience when there is a stimulus-response conflict. The Stroop effect refers to the interference people experience when two attributes of the same stimulus conflict with each other. Although previous imaging studies have compared the brain activation for each of these tasks performed separately, none had done so in an integrated task that incorporates both types of interference, as was done in the current experiment. Both tasks activated brain regions that serve as a source of attentional control (dorsolateral prefrontal cortex) and posterior regions that are sites of attentional control (the visual processing stream-middle occipital and inferior temporal cortices). In addition, there were also specific brain regions activated to a significantly greater degree by one task and/or only by a single task. The brain regions significantly more activated by the Simon task were those sensitive to detection of response conflict, response selection, and planning (anterior cingulate cortex, supplementary motor areas, and precuneus), and visuospatial-motor association areas. In contrast, the regions significantly more activated by the Stroop task were those involved in biasing the processing toward the task-relevant attribute (inferior parietal cortex). These findings suggest that the interference effects of these two tasks are caused by different types of conflict (stimulus-response conflict for the Simon effect and stimulus-stimulus conflict for the Stroop effect) but both invoke similar sources of top-down modulation.

Pubmed ID: 15219581 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FSL (tool)

RRID:SCR_002823

Software library of image analysis and statistical tools for fMRI, MRI and DTI brain imaging data. Include registration, atlases, diffusion MRI tools for parameter reconstruction and probabilistic taractography, and viewer. Several brain atlases, integrated into FSLView and Featquery, allow viewing of structural and cytoarchitectonic standard space labels and probability maps for cortical and subcortical structures and white matter tracts. Includes Harvard-Oxford cortical and subcortical structural atlases, Julich histological atlas, JHU DTI-based white-matter atlases, Oxford thalamic connectivity atlas, Talairach atlas, MNI structural atlas, and Cerebellum atlas.

View all literature mentions