We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Temperature dependence of metabolic rates for microbial growth, maintenance, and survival.

Our work was motivated by discoveries of prokaryotic communities that survive with little nutrient in ice and permafrost, with implications for past or present microbial life in Martian permafrost and Europan ice. We compared the temperature dependence of metabolic rates of microbial communities in permafrost, ice, snow, clouds, oceans, lakes, marine and freshwater sediments, and subsurface aquifer sediments. Metabolic rates per cell fall into three groupings: (i) a rate, microg(T), for growth, measured in the laboratory at in situ temperatures with minimal disturbance of the medium; (ii) a rate, microm(T), sufficient for maintenance of functions but for a nutrient level too low for growth; and (iii) a rate, micros(T), for survival of communities imprisoned in deep glacial ice, subsurface sediment, or ocean sediment, in which they can repair macromolecular damage but are probably largely dormant. The three groups have metabolic rates consistent with a single activation energy of approximately 110 kJ and that scale as microg(T):microm(T):micros(T) approximately 10(6):10(3):1. There is no evidence of a minimum temperature for metabolism. The rate at -40 degrees C in ice corresponds to approximately 10 turnovers of cellular carbon per billion years. Microbes in ice and permafrost have metabolic rates similar to those in water, soil, and sediment at the same temperature. This finding supports the view that, far below the freezing point, liquid water inside ice and permafrost is available for metabolism. The rate micros(T) for repairing molecular damage by means of DNA-repair enzymes and protein-repair enzymes such as methyltransferase is found to be comparable to the rate of spontaneous molecular damage.

Pubmed ID: 15070769 RIS Download

Mesh terms: Bacteria | Cell Survival | Ice | Kinetics | Temperature | Thermodynamics

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


BioNumbers (Data, Value observation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.