Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

A mouse model for alpha-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids.

Human molecular genetics | May 1, 2004

alpha-Methylacyl-CoA racemase (Amacr) deficiency in humans leads to sensory motor neuronal and liver abnormalities. The disorder is recessively inherited and caused by mutations in the AMACR gene, which encodes Amacr, an enzyme presumed to be essential for bile acid synthesis and to participate in the degradation of methyl-branched fatty acids. To generate a model to study the pathophysiology in Amacr deficiency we inactivated the mouse Amacr gene. As per human Amacr deficiency, the Amacr(-/-) mice showed accumulation (44-fold) of C27 bile acid precursors and decreased (over 50%) primary (C24) bile acids in bile, serum and liver, however the Amacr(-/-) mice were clinically symptomless. Real-time quantitative PCR analysis showed that, among other responses, the level of mRNA for peroxisomal multifunctional enzyme type 1 (pMFE-1) was increased 3-fold in Amacr(-/-) mice. This enzyme can be placed, together with CYP3A11 and CYP46A1, to make an Amacr-independent pathway for the generation of C24 bile acids. Exposure of Amacr(-/-) mice to a diet supplemented with phytol, a source for branched-chain fatty acids, triggered the development of a disease state with liver manifestations, redefining the physiological significance of Amacr. Amacr is indispensable for the detoxification of dietary methyl-branched lipids and, although it contributes normally to bile acid synthesis from cholesterol, the putative pMFE-1-mediated cholesterol degradation can provide for generation of bile acids, allowing survival without Amacr. Based upon our mouse model, we propose elimination of phytol from the diet of patients suffering from Amacr deficiency.

Pubmed ID: 15016763 RIS Download

Mesh terms: Animals | Aryl Hydrocarbon Hydroxylases | Bile Acids and Salts | Body Weight | Cholesterol | Cholesterol 24-Hydroxylase | Clofibrate | Cytochrome P-450 CYP3A | Deficiency Diseases | Deoxyribonucleases, Type II Site-Specific | Dietary Fats | Disease Models, Animal | Female | Gene Expression Regulation | Hypolipidemic Agents | Kidney | Lipids | Liver | Male | Membrane Proteins | Mice | Mice, Mutant Strains | Oxidoreductases, N-Demethylating | Phytol | Racemases and Epimerases | Steroid Hydroxylases | Vitamin K

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.