Literature search services are currently unavailable. During our hosting provider's UPS upgrade we experienced a hardware failure and are currently working to resolve the issue.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system.

The klotho gene encodes a novel type I membrane protein of beta-glycosidase family and is expressed principally in distal tubule cells of the kidney and choroid plexus in the brain. These mutants displayed abnormal calcium and phosphorus homeostasis together with increased serum 1,25-(OH)2D. In kl-/- mice at the age of 3 wk, elevated levels of serum calcium (10.9 +/- 0.31 mg/dl vs. 10.0 +/- 0.048 mg/dl in wild-type mice), phosphorus (14.7 +/- 1.1 mg/dl vs. 9.7 +/- 1.5 mg/dl in wild type) and most notably, 1,25-(OH)2D (403 +/- 99.7 mg/dl vs. 88.0 +/- 34.0 mg/dl in wild type) were observed. Reduction of serum 1,25-(OH)2D concentrations by dietary restriction resulted in alleviation of most of the phenotypes, suggesting that they are downstream events resulting from elevated 1,25-(OH)2D. We searched for the signals that lead to up-regulation of vitamin D activating enzymes. We examined the response of 1alpha-hydroxylase gene expression to calcium regulating hormones, such as PTH, calcitonin, and 1,25-(OH)2D3. These pathways were intact in klotho null mutant mice, suggesting the existence of alternate regulatory circuits. We also found that the administration of 1,25-(OH)2D3 induced the expression of klotho in the kidney. These observations suggest that klotho may participate in a negative regulatory circuit of the vitamin D endocrine system, through the regulation of 1alpha-hydroxylase gene expression.

Pubmed ID: 14528024


  • Tsujikawa H
  • Kurotaki Y
  • Fujimori T
  • Fukuda K
  • Nabeshima Y


Molecular endocrinology (Baltimore, Md.)

Publication Data

December 9, 2003

Associated Grants


Mesh Terms

  • 25-Hydroxyvitamin D3 1-alpha-Hydroxylase
  • Aging, Premature
  • Animals
  • Body Weight
  • Calcitriol
  • Diet
  • Disease Models, Animal
  • Gene Expression Regulation
  • Glucuronidase
  • Humans
  • Kidney
  • Membrane Proteins
  • Mice
  • Mice, Knockout
  • RNA
  • Reference Values
  • Vitamin D
  • Vitamin D Deficiency