• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Regulation of the Wnt signaling pathway by disabled-2 (Dab2).

The adaptor molecule Disabled-2 (Dab2) has been shown to link cell surface receptors to downstream signaling pathways. Using a small-pool cDNA screening strategy, we identify that the N-terminal domain of Dab2 interacts with Dishevelled-3 (Dvl-3), a signaling mediator of the Wnt pathway. Ectopic expression of Dab2 in NIH-3T3 mouse fibroblasts attenuates canonical Wnt/beta-catenin-mediated signaling, including accumulation of beta-catenin, activation of beta-catenin/T-cell-specific factor/lymphoid enhancer-binding factor 1-dependent reporter constructs, and endogenous cyclin D1 induction. Wnt stimulation leads to a time-dependent dissociation of endogenous Dab2-Dvl-3 and Dvl-3-axin interactions in NIH-3T3 cells, while Dab2 overexpression leads to maintenance of Dab2-Dvl-3 association and subsequent loss of Dvl-3-axin interactions. In addition, we find that Dab2 can associate with axin in vitro and stabilize axin expression in vivo. Mouse embryo fibroblasts which lack Dab2 exhibit constitutive Wnt signaling as evidenced by increased levels of nuclear beta-catenin and cyclin D1 protein levels. Based on these results, we propose that Dab2 functions as a negative regulator of canonical Wnt signaling by stabilizing the beta-catenin degradation complex, which may contribute to its proposed role as a tumor suppressor.

Pubmed ID: 12805222

Authors

  • Hocevar BA
  • Mou F
  • Rennolds JL
  • Morris SM
  • Cooper JA
  • Howe PH

Journal

The EMBO journal

Publication Data

June 16, 2003

Associated Grants

  • Agency: NCI NIH HHS, Id: CA55536
  • Agency: NCI NIH HHS, Id: CA80095

Mesh Terms

  • Adaptor Proteins, Signal Transducing
  • Adaptor Proteins, Vesicular Transport
  • Animals
  • Axin Protein
  • Cell Line
  • Culture Media, Conditioned
  • Cytoskeletal Proteins
  • Enzyme Activation
  • Fibroblasts
  • Genes, Reporter
  • Genes, Tumor Suppressor
  • JNK Mitogen-Activated Protein Kinases
  • Mice
  • Mice, Knockout
  • Mitogen-Activated Protein Kinases
  • Phosphoproteins
  • Protein Structure, Tertiary
  • Proteins
  • Proto-Oncogene Proteins
  • Recombinant Fusion Proteins
  • Repressor Proteins
  • Signal Transduction
  • Trans-Activators
  • Tumor Suppressor Proteins
  • Wnt Proteins
  • Wnt3 Protein
  • Zebrafish Proteins
  • beta Catenin