• Register
X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X

Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.

No
Yes

Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation.

The mammalian Bin1/Amphiphysin II gene encodes an assortment of alternatively spliced adapter proteins that exhibit markedly divergent expression and subcellular localization profiles. Bin1 proteins have been implicated in a variety of different cellular processes, including endocytosis, actin cytoskeletal organization, transcription, and stress responses. To gain insight into the physiological functions of the Bin1 gene, we have disrupted it by homologous recombination in the mouse. Bin1 loss had no discernible impact on either endocytosis or phagocytosis in mouse embryo-derived fibroblasts and macrophages, respectively. Similarly, actin cytoskeletal organization, proliferation, and apoptosis in embryo fibroblasts were all unaffected by Bin1 loss. In vivo, however, Bin1 loss resulted in perinatal lethality. Bin1 has been reported to affect muscle cell differentiation and T-tubule formation. No striking histological abnormalities were evident in skeletal muscle of Bin1 null embryos, but severe ventricular cardiomyopathy was observed in these embryos. Ultrastructurally, myofibrils in ventricular cardiomyocytes of Bin1 null embryos were severely disorganized. These results define a developmentally critical role for the Bin1 gene in cardiac muscle development.

Pubmed ID: 12773571

Authors

  • Muller AJ
  • Baker JF
  • DuHadaway JB
  • Ge K
  • Farmer G
  • Donover PS
  • Meade R
  • Reid C
  • Grzanna R
  • Roach AH
  • Shah N
  • Soler AP
  • Prendergast GC

Journal

Molecular and cellular biology

Publication Data

June 29, 2003

Associated Grants

None

Mesh Terms

  • Actins
  • Adaptor Proteins, Signal Transducing
  • Animals
  • Apoptosis
  • Blotting, Western
  • Cardiomyopathies
  • Carrier Proteins
  • Cell Division
  • Cell Line
  • Culture Media, Serum-Free
  • Cytoskeleton
  • Endocytosis
  • Fibroblasts
  • Immunohistochemistry
  • Macrophages
  • Mice
  • Models, Genetic
  • Muscle, Skeletal
  • Muscles
  • Mutagenesis, Site-Directed
  • Nerve Tissue Proteins
  • Nuclear Proteins
  • Phagocytosis
  • Polymerase Chain Reaction
  • Protein Isoforms
  • Protein Structure, Tertiary
  • Time Factors
  • Tumor Suppressor Proteins