Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Nab2p and the Thp1p-Sac3p complex functionally interact at the interface between transcription and mRNA metabolism.

http://www.ncbi.nlm.nih.gov/pubmed/12702719

THP1 is a conserved eukaryotic gene whose null mutations confer, in yeast, transcription and genetic instability phenotypes and RNA export defects similar to those of the THO/TREX complex null mutations. In a search for multicopy suppressors of the transcription defect of thp1Delta cells, we identified the poly(A)+ RNA-binding heterogeneous nuclear ribonucleoprotein Nab2p. Multicopy NAB2 also suppressed the RNA export defect of thp1Delta cells. This result suggests a functional relationship between Thp1p and Nab2p. Consistently, the leaky mutation nab2-1 conferred a transcription defect and hyper-recombination phenotype similar to those of thp1Delta, although to a minor degree. Reciprocally, a purified His6-tagged Thp1p fusion bound RNA in vitro. In a different approach, we show by Western analyses that a highly purified Thp1p-Sac3p complex does not contain components of THO/TREX and that sac3Delta confers a transcription defect and hyper-recombination phenotype identical to those of thp1Delta. mRNA degradation was not affected in thp1Delta mutants, implying that their expression defects are not due to mRNA decay. This indicates that Thp1p-Sac3p is a structural and functional unit. Altogether, our results suggest that Thp1p-Sac3p and Nab2p are functionally related heterogeneous nuclear ribonucleoproteins that define a further link between mRNA metabolism and transcription.

Pubmed ID: 12702719 RIS Download

Mesh terms: Fungal Proteins | Heterogeneous-Nuclear Ribonucleoproteins | Nuclear Proteins | Nucleocytoplasmic Transport Proteins | Phenotype | Porins | RNA, Messenger | RNA-Binding Proteins | Recombination, Genetic | Ribonucleoproteins | Saccharomyces cerevisiae Proteins | Transcription, Genetic

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.