• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Angiomotin regulates visceral endoderm movements during mouse embryogenesis.

In pregastrula stage mouse embryos, visceral endoderm (VE) migrates from a distal to anterior position to initiate anterior identity in the adjacent epiblast. This anterior visceral endoderm (AVE) is then displaced away from the epiblast by the definitive endoderm to become associated with the extra-embryonic ectoderm and subsequently contributes to the yolk sac. Little is known about the molecules that regulate this proximal displacement. Here we describe a role for mouse angiomotin (amot) in VE movements. amot expression is initially detected in the AVE and subsequently in the VE associated with the extra-embryonic ectoderm. Most amot mutant mice die soon after gastrulation with distinct furrows of VE located at the junction of the embryonic and extra-embryonic regions. Mutant analysis suggests that VE accumulation in these furrows is caused by defects in cell migration into proximal extra-embryonic regions, although distal-to-anterior movements associated with the epiblast, definitive endoderm formation, and anterior specification of the epiblast appear to be normal. These results suggest that amot acts within subregions of the VE to regulate morphogenetic movements that are required for embryo viability.

Pubmed ID: 12676095


  • Shimono A
  • Behringer RR


Current biology : CB

Publication Data

April 1, 2003

Associated Grants


Mesh Terms

  • Amino Acid Sequence
  • Animals
  • Carrier Proteins
  • Cell Movement
  • DNA Mutational Analysis
  • Endoderm
  • Gene Expression Profiling
  • Histological Techniques
  • Intercellular Signaling Peptides and Proteins
  • Membrane Proteins
  • Mice
  • Molecular Sequence Data