Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

What neural correlates underlie successful encoding and retrieval? A functional magnetic resonance imaging study using a divided attention paradigm.

If attention is divided during learning, memory suffers. Nevertheless, individuals can learn information with divided attention. This event-related functional magnetic resonance imaging (fMRI) study (n = 17) investigated what neural processes support (1) learning with divided attention and (2) retrieval of information learned with divided attention. Participants encoded words (Is the word abstract or concrete?) while performing an auditory discrimination task (press a button whenever an auditory pattern changes). The auditory task was easy or hard, depending on the similarity of the patterns. A behavioral study indicated that detailed ("recollective") information was more likely to be present for words encoded with the easy versus the hard concurrent task. Words encoded with the hard versus the easy concurrent task, in contrast, were more likely to rely on less detailed ("familiarity"-based) information. fMRI revealed encoding-related activation in the left prefrontal cortex (PFC) and left hippocampus that was linked to successful memory formation only for items encoded with the easy task. In contrast, activation in the right PFC and left parahippocampal gyrus was linked to successful memory for all items. Thus, successful encoding with the hard concurrent task was supported by a subset of the regions recruited for successful encoding with the easy task. The neural processes recruited for successful retrieval also depended on the encoding condition: The left PFC was disproportionately recruited for retrieval of items encoded with the easy task, whereas the right PFC was disproportionately recruited for retrieval of items encoded with the hard task. These findings may reflect left-sided specialization for recollective memories and right-sided specialization for familiarity-based traces.

Pubmed ID: 12657700


  • Kensinger EA
  • Clarke RJ
  • Corkin S


The Journal of neuroscience : the official journal of the Society for Neuroscience

Publication Data

March 15, 2003

Associated Grants

  • Agency: NIA NIH HHS, Id: AG14432

Mesh Terms

  • Acoustic Stimulation
  • Adult
  • Attention
  • Brain Mapping
  • Discrimination (Psychology)
  • Female
  • Functional Laterality
  • Hippocampus
  • Humans
  • Learning
  • Magnetic Resonance Imaging
  • Male
  • Mental Recall
  • Neurons
  • Parahippocampal Gyrus
  • Photic Stimulation
  • Prefrontal Cortex
  • Reaction Time
  • Verbal Behavior