Our hosting provider is investigating network issues. We apologize for the inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Systematic determination of patterns of gene expression during Drosophila embryogenesis.

Genome biology | Jan 22, 2002

BACKGROUND: Cell-fate specification and tissue differentiation during development are largely achieved by the regulation of gene transcription. RESULTS: As a first step to creating a comprehensive atlas of gene-expression patterns during Drosophila embryogenesis, we examined 2,179 genes by in situ hybridization to fixed Drosophila embryos. Of the genes assayed, 63.7% displayed dynamic expression patterns that were documented with 25,690 digital photomicrographs of individual embryos. The photomicrographs were annotated using controlled vocabularies for anatomical structures that are organized into a developmental hierarchy. We also generated a detailed time course of gene expression during embryogenesis using microarrays to provide an independent corroboration of the in situ hybridization results. All image, annotation and microarray data are stored in publicly available database. We found that the RNA transcripts of about 1% of genes show clear subcellular localization. Nearly all the annotated expression patterns are distinct. We present an approach for organizing the data by hierarchical clustering of annotation terms that allows us to group tissues that express similar sets of genes as well as genes displaying similar expression patterns. CONCLUSIONS: Analyzing gene-expression patterns by in situ hybridization to whole-mount embryos provides an extremely rich dataset that can be used to identify genes involved in developmental processes that have been missed by traditional genetic analysis. Systematic analysis of rigorously annotated patterns of gene expression will complement and extend the types of analyses carried out using expression microarrays.

Pubmed ID: 12537577 RIS Download

Mesh terms: Animals | Cluster Analysis | Database Management Systems | Databases, Genetic | Drosophila melanogaster | Gene Expression Profiling | Gene Expression Regulation, Developmental | Genes, Insect | Image Processing, Computer-Assisted | In Situ Hybridization | Oligonucleotide Array Sequence Analysis

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


FlyBase

Database of Drosophila genetic and genomic information with information about stock collections and fly genetic tools. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. Additionally, FlyBase accepts data submissions. FlyBase can be searched for genes, alleles, aberrations and other genetic objects, phenotypes, sequences, stocks, images and movies, controlled terms, and Drosophila researchers using the tools available from the "Tools" drop-down menu in the Navigation bar.

tool

View all literature mentions

Berkeley Drosophila Genome Project

Database on the sequence of the euchromatic genome of Drosophila melanogaster In addition to genomic sequencing, the BDGP is 1) producing gene disruptions using P element-mediated mutagenesis on a scale unprecedented in metazoans; 2) characterizing the sequence and expression of cDNAs; and 3) developing informatics tools that support the experimental process, identify features of DNA sequence, and allow us to present up-to-date information about the annotated sequence to the research community. Resources * Universal Proteomics Resource: Search for clones for expression and tissue culture * Materials: Request genomic or cDNA clones, library filters or fly stocks * Download Sequence data sets and annotations in fasta or xml format by http or ftp * Publications: Browse or download BDGP papers * Methods: BDGP laboratory protocols and vector maps * Analysis Tools: Search sequences for CRMs, promoters, splice sites, and gene predictions * Apollo: Genome annotation viewer and editor September 15, 2009 Illumina RNA-Seq data from 30 developmental time points of D. melanogaster has been submitted to the Short Read Archive at NCBI as part of the modENCODE project. The data set currently contains 2.2 billion single-end and paired reads and over 201 billion base pairs.

tool

View all literature mentions