Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Computational comparison of two mouse draft genomes and the human golden path.

Genome biology | 2003

The availability of both mouse and human draft genomes has marked the beginning of a new era of comparative mammalian genomics. The two available mouse genome assemblies, from the public mouse genome sequencing consortium and Celera Genomics, were obtained using different clone libraries and different assembly methods.

Pubmed ID: 12537546 RIS Download

Research resources used in this publication

None found

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


Ensembl (tool)

RRID:SCR_002344

Collection of genome databases for vertebrates and other eukaryotic species with DNA and protein sequence search capabilities. Used to automatically annotate genome, integrate this annotation with other available biological data and make data publicly available via web. Ensembl tools include BLAST, BLAT, BioMart and the Variant Effect Predictor (VEP) for all supported species.

View all literature mentions

UCSC Genome Browser (tool)

RRID:SCR_005780

Portal to interactively visualize genomic data. Provides reference sequences and working draft assemblies for collection of genomes and access to ENCODE and Neanderthal projects. Includes collection of vertebrate and model organism assemblies and annotations, along with suite of tools for viewing, analyzing and downloading data.

View all literature mentions

UW Genome Sciences (tool)

RRID:SCR_008562

Welcome to the Department of Genome Sciences, which began in September 2001 by the fusion of the Departments of Genetics and Molecular Biotechnology. Our goal is to address leading edge questions in biology and medicine by developing and applying genetic, genomic and computational approaches that take advantage of genomic information now available for humans, model organisms and a host of other species. Our faculty study a broad range of topics, including the genetics of E. coli, yeast, C. elegans, Drosophila, and mouse; human and medical genetics; mathematical, statistical and computer methods for analyzing genomes, and theoretical and evolutionary genetics; and genome-wide studies by such approaches as sequencing, transcriptional and translational analysis, polymorphism detection and identification of protein interactions. Our chair, Dr. Robert Waterston, joined the department in January 2003. Our department includes both faculty with primary appointments in Genome Sciences, as well as adjuncts in other departments and Seattle institutions. Nine faculty are members of the National Academy of Sciences, including 2001 Nobel Prize winner Dr. Lee Hartwell, who conducted much of his groundbreaking work in the Department of Genetics. Five training faculty are Howard Hughes Medical Institute Investigators. Graduate research in the Department leads to a Ph.D. in Genome Sciences and students may also choose to participate in the Computational Molecular Biology or Molecular Medicine programs. Our department has around 55 - 60 graduate students at any given time and has moved into the new William H. Foege Building.

View all literature mentions

NCBI BLAST (tool)

RRID:SCR_004870

Web search tool to find regions of similarity between biological sequences. Program compares nucleotide or protein sequences to sequence databases and calculates statistical significance. Used for identifying homologous sequences.

View all literature mentions

BLAT (tool)

RRID:SCR_011919

Software designed to quickly find sequences of 95% and greater similarity of length 25 bases or more.

View all literature mentions