We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Role for the mortality factors MORF4, MRGX, and MRG15 in transcriptional repression via associations with Pf1, mSin3A, and Transducin-Like Enhancer of Split.

mSin3A and Transducin-Like Enhancer of Split (TLE) are two histone deacetylase (HDAC)-containing corepressors that function to repress transcription at targeted genes. Pf1 is a plant homeodomain zinc finger protein that interacts with both mSin3A and TLE, suggesting that it coordinates their function. Here we show that mSin3A and TLE interact with members of the mortality factor (MORF) family of putative transcriptional regulators. This family comprises MORF on chromosome 4 (MORF4) and MORF-related genes on chromosomes X and 15 (MRGX and MRG15, respectively) and is proposed to contribute to cellular senescence. Consistent with a role in transcription, we demonstrate that Gal4 fusions to each MORF family member repress transcription from a Gal4-dependent luciferase reporter. By using both mapping experiments and a dominant negative form of TLE, we show that repression by MORFs requires associations with mSin3A and TLE. Therefore, common functions of the MORFs are likely elicited through the action of a MORF/mSin3A/TLE complex. While the MORFs may have common functions, MRG15, but not MRGX or MORF4, interacted with Pf1. Therefore, MRG15 may have functions that are distinct from those of MRGX and MORF4. Consistent with this hypothesis, Pf1 reduced transcriptional repression by Gal4-MRG15 but it had no effect on repression by MRGX and MORF4. Pf1 has independent binding sites for MRG15 and mSin3A. In addition, Pf1 and MRG15 bind different domains on mSin3A. Together, these data suggest that the unique functions of MRG15 are elicited through the action of an MRG15/Pf1/mSin3A complex.

Pubmed ID: 12391155 RIS Download

Mesh terms: Animals | Cell Aging | Cell Line | Chromosomes, Human, Pair 15 | DNA-Binding Proteins | Genes, Reporter | Homeodomain Proteins | Humans | Macromolecular Substances | Mice | Nuclear Proteins | Protein Binding | Proto-Oncogene Proteins c-myc | Recombinant Fusion Proteins | Repressor Proteins | Transcription Factors | Transcription, Genetic | Two-Hybrid System Techniques | X Chromosome | Zinc Fingers

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NCI NIH HHS, Id: P30 CA042014
  • Agency: NIGMS NIH HHS, Id: R01 GM055668
  • Agency: NCI NIH HHS, Id: 2P30 CA42014
  • Agency: NIGMS NIH HHS, Id: GM55668

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.