We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

High level of uncoupling protein 1 expression in muscle of transgenic mice selectively affects muscles at rest and decreases their IIb fiber content.

The mitochondrial uncoupling protein of brown adipose tissue (UCP1) was expressed in skeletal muscle and heart of transgenic mice at levels comparable with the amount found in brown adipose tissue mitochondria. These transgenic mice have a lower body weight, and when related to body weight, food intake and energy expenditure are increased. A specific reduction of muscle mass was observed but varied according to the contractile activity of muscles. Heart and soleus muscle are unaffected, indicating that muscles undergoing regular contractions, and therefore with a continuous mitochondrial ATP production, are protected. In contrast, the gastrocnemius and plantaris muscles showed a severely reduced mass and a fast to slow shift in fiber types promoting mainly IIa and IIx fibers at the expense of fastest and glycolytic type IIb fibers. These observations are interpreted as a consequence of the strong potential dependence of the UCP1 protonophoric activity, which ensures a negligible proton leak at the membrane potential observed when mitochondrial ATP production is intense. Therefore UCP1 is not deleterious for an intense mitochondrial ATP production and this explains the tolerance of the heart to a high expression level of UCP1. In muscles at rest, where ATP production is low, the rise in membrane potential enhances UCP1 activity. The proton return through UCP1 mimics the effect of a sustained ATP production, permanently lowering mitochondrial membrane potential. This very likely constitutes the origin of the signal leading to the transition in fiber types at rest.

Pubmed ID: 12221093 RIS Download

Mesh terms: Adenosine Triphosphate | Adipose Tissue, Brown | Animals | Body Weight | Carrier Proteins | Energy Intake | Energy Metabolism | Heart | Ion Channels | Membrane Proteins | Mice | Mice, Transgenic | Mitochondria | Mitochondria, Muscle | Mitochondrial Proteins | Muscle Fibers, Fast-Twitch | Muscle, Skeletal | Myocardial Contraction | Organ Specificity | Phenotype | Phosphocreatine | Rats | Regression Analysis | Rest | Uncoupling Protein 1

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants


Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.