We have updated our privacy policy. If you have any question, contact us at privacy@scicrunch.org. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Mutually regulated expression of Pax6 and Six3 and its implications for the Pax6 haploinsufficient lens phenotype.

Pax6 is a key regulator of eye development in vertebrates and invertebrates, and heterozygous loss-of-function mutations of the mouse Pax6 gene result in the Small eye phenotype, in which a small lens is a constant feature. To provide an understanding of the mechanisms underlying this haploinsufficient phenotype, we evaluated in Pax6 heterozygous mice the effects of reduced Pax6 gene dosage on the activity of other transcription factors regulating eye formation. We found that Six3 expression was specifically reduced in lenses of Pax6 heterozygous mouse embryos. Interactions between orthologous genes from the Pax and Six families have been identified in Drosophila and vertebrate species, and we examined the control of Pax6 and Six3 gene expression in the developing mouse lens. Using in vitro and transgenic approaches, we found that either transcription factor binds regulatory sequences from the counterpart gene and that both genes mutually activate their expression. These studies define a functional relationship in the lens in which Six3 expression is dosage-dependent on Pax6 and where, conversely, Six3 activates Pax6. Accordingly, we show a rescue of the Pax6 haploinsufficient lens phenotype after lens-specific expression of Six3 in transgenic mice. This phenotypic rescue was accompanied by cell proliferation and activation of the platelet-derived growth factor alpha-R/cyclin D1 signaling pathway. Our findings thus provide a mechanism implicating gene regulatory interactions between Pax6 and Six3 in the tissue-specific defects found in Pax6 heterozygous mice.

Pubmed ID: 12072567 RIS Download

Mesh terms: Animals | Base Sequence | Cyclin D | Cyclins | DNA Primers | Drosophila Proteins | Electrophoretic Mobility Shift Assay | Eye Proteins | Gene Expression Regulation, Developmental | Heterozygote | Homeodomain Proteins | Immunohistochemistry | In Situ Hybridization | In Situ Nick-End Labeling | Lens, Crystalline | Mice | Mice, Transgenic | Nerve Tissue Proteins | PAX6 Transcription Factor | Paired Box Transcription Factors | Phenotype | Receptor, Platelet-Derived Growth Factor alpha | Repressor Proteins | Up-Regulation

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NEI NIH HHS, Id: R01 EY013146
  • Agency: NEI NIH HHS, Id: EY13146

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.