Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Protein kinase C beta controls nuclear factor kappaB activation in B cells through selective regulation of the IkappaB kinase alpha.

Activation of the nuclear factor (NF)-kappaB transcription complex by signals derived from the surface expressed B cell antigen receptor controls B cell development, survival, and antigenic responses. Activation of NF-kappaB is critically dependent on serine phosphorylation of the IkappaB protein by the multi-component IkappaB kinase (IKK) containing two catalytic subunits (IKKalpha and IKKbeta) and one regulatory subunit (IKKgamma). Using mice deficient for protein kinase C beta (PKCbeta) we show an essential role of PKCbeta in the phosphorylation of IKKalpha and the subsequent activation of NF-kappaB in B cells. Defective IKKalpha phosphorylation correlates with impaired B cell antigen receptor-mediated induction of the pro-survival protein Bcl-xL. Lack of IKKalpha phosphorylation and defective NF-kappaB induction in the absence of PKCbeta explains the similarity in immunodeficiencies caused by PKCbeta or IKKalpha ablation in B cells. Furthermore, the well established functional cooperation between the protein tyrosine kinase Bruton's tyrosine kinase (Btk), which regulates the activity of NF-kappaB and PKCbeta, suggests PKCbeta as a likely serine/threonine kinase component of the Btk-dependent NF-kappaB activating signal transduction chain downstream of the BCR.

Pubmed ID: 12070292