SciCrunch will be offline today beginning at 6:30 PM PDT for about 15 minutes.
  • Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor.

In the androgen receptor (AR), most of its transactivation activity is mediated via the activation function-1 (AF-1). By employing yeast two-hybrid assay, we isolated a cDNA sequence encoding a protein binding to AR-AF-1. This protein, named ANT-1 (AR N-terminal domain transactivating protein-1), enhanced the ligand-independent autonomous AF-1 transactivation function of AR or glucocorticoid receptor but did not enhance that of estrogen receptor alpha. In contrast, the ANT-1 did not enhance any ligand-dependent AF-2 activities. Furthermore, the ligand-independent interaction between AR-AF-1 and ANT-1 was confirmed in vivo and in vitro. The ANT-1 sequence was identical to that of a protein that binds to U5 small nuclear ribonucleoprotein particle, a human homologue of yeast splicing factor Prp6p, involved in spliceosome. ANT-1 was compartmentalized into 20-40 coarse splicing factor compartment speckles against the background of the diffuse reticular distribution. AR colocalized with ANT-1 only in the diffusely distributed area, whereas the ANT-1 speckles were spatially distinct from but surrounded by the AR compartments. The active gene transcription has been shown to couple simultaneously with pre-mRNA processing at the periphery of the splicing factor compartment. The molecular interaction between two spatially distinct subnuclear compartments mediated by ANT-1 may therefore recruit AR into the transcription-splicing-coupling machinery.

Pubmed ID: 12039962