Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Regulation of an activated S6 kinase 1 variant reveals a novel mammalian target of rapamycin phosphorylation site.

http://www.ncbi.nlm.nih.gov/pubmed/11914378

A critical step in S6 kinase 1 (S6K1) activation is Thr(229) phosphorylation in the activation loop by the phosphoinositide-dependent protein kinase (PDK1). Thr(229) phosphorylation requires prior phosphorylation of the Ser/Thr-Pro sites in the autoinhibitory domain and Thr(389) in the linker domain, consistent with PDK1 more effectively catalyzing Thr(229) phosphorylation in a variant harboring acidic residues in these positions (S6K1-E389D(3)E). S6K1-E389D(3)E has high basal activity and exhibits partial resistance to rapamycin and wortmannin, and its activity can be further augmented by mitogens, effects presumably mediated by Thr(229) phosphorylation. However, PDK1-induced Thr(229) phosphorylation is reported to be constitutive rather than phosphatidylinositide 3,4,5-trisphosphate-dependent, suggesting that S6K1-E389D(3)E activity is mediated through a distinct site. Here we use phosphospecific antibodies to show that Thr(229) is fully phosphorylated in S6K1-E389D(3)E in the absence of mitogens and that regulation of S6K1-E389D(3)E activity by mitogens, rapamycin, or wortmannin parallels Ser(371) phosphorylation. Consistent with this observation, a dominant interfering allele of the mammalian target of rapamycin, mTOR, inhibits mitogen-induced Ser(371) phosphorylation and activation of S6K1-E389D(3)E, whereas wild type mTOR stimulates both responses. Moreover, in vitro mTOR directly phosphorylates Ser(371), and this event modulates Thr(389) phosphorylation by mTOR, compatible with earlier in vivo findings.

Pubmed ID: 11914378 RIS Download

Mesh terms: Androstadienes | Animals | Antibiotics, Antineoplastic | Binding Sites | Cell Line | Enzyme Inhibitors | Genes, Dominant | Glutathione Transferase | Humans | Immunoblotting | Insulin | Phosphorylation | Plasmids | Precipitin Tests | Protein Binding | Protein Structure, Tertiary | Recombinant Fusion Proteins | Ribosomal Protein S6 Kinases | Serine | Sirolimus | Threonine | Transfection