Literature search services are currently unavailable. During our hosting provider's UPS upgrade we experienced a hardware failure and are currently working to resolve the issue.

Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1.

Cell cycle checkpoints are evolutionarily conserved surveillance systems that protect genomic stability and prevent oncogenesis in mammals. One important target of checkpoint control is ribonucleotide reductase (RNR), which catalyzes the rate-limiting step in dNTP and DNA synthesis. In both yeast and humans, RNR is transcriptionally induced after DNA damage via Mec1/Rad53 (yeast) and ATM/CHK2 (human) checkpoint pathways. In addition, yeast checkpoint proteins Mec1 and Rad53 also regulate the RNR inhibitor Sml1. After DNA damage or at S phase, Mec1 and Rad53 control the phosphorylation and concomitant degradation of Sml1 protein. This new layer of control contributes to the increased dNTP production likely necessary for DNA repair and replication; however, the molecular mechanism is unclear. Here we show that Dun1, a downstream kinase of Mec1/Rad53, genetically and physically interacts with Sml1 in vivo. The absence of Dun1 activity leads to the accumulation of Sml1 protein at S phase and after DNA damage. As a result, dun1Delta strains need more time to finish DNA replication, are defective in mitochondrial DNA propagation, and are sensitive to DNA-damaging agents. Moreover, phospho-Sml1 is absent or dramatically reduced in dun1Delta cells. Finally, Dun1 can phosphorylate Sml1 in vitro. These results suggest that Dun1 kinase function is the last step required in the Mec1/Rad53 cascade to remove Sml1 during S phase and after DNA damage.

Pubmed ID: 11904430


  • Zhao X
  • Rothstein R


Proceedings of the National Academy of Sciences of the United States of America

Publication Data

March 19, 2002

Associated Grants

  • Agency: NIGMS NIH HHS, Id: GM50237
  • Agency: NIGMS NIH HHS, Id: R01 GM080670

Mesh Terms

  • Alleles
  • Cell Cycle Proteins
  • Cell Division
  • Checkpoint Kinase 2
  • DNA Damage
  • Enzyme Inhibitors
  • Fungal Proteins
  • Gene Deletion
  • Genes, Lethal
  • Intracellular Signaling Peptides and Proteins
  • Models, Biological
  • Phenotype
  • Phosphorylation
  • Protein Binding
  • Protein Kinases
  • Protein-Serine-Threonine Kinases
  • Ribonucleotide Reductases
  • S Phase
  • Saccharomyces cerevisiae
  • Saccharomyces cerevisiae Proteins
  • Two-Hybrid System Techniques