Preparing your results

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

The neural basis of intermittent motor control in humans.

The basic question of whether the human brain controls continuous movements intermittently is still under debate. Here we show that 6- to 9-Hz pulsatile velocity changes of slow finger movements are directly correlated to oscillatory activity in the motor cortex, which is sustained by cerebellar drive through thalamus and premotor cortex. Our findings suggest that coupling of 6- to 9-Hz oscillatory activity in the cerebello-thalamo-cortical loop represents the neural mechanism for the intermittent control of continuous movements.

Pubmed ID: 11854526 RIS Download

Mesh terms: Adult | Brain | Female | Humans | Magnetoencephalography | Male | Models, Anatomic | Models, Theoretical | Motor Cortex | Movement | Neurons | Oscillometry | Time Factors

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

None

Mouse Genome Informatics (Data, Gene Annotation)

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.