Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Hoxa3 regulates integration of glossopharyngeal nerve precursor cells.

Developmental biology | 2001

In vertebrates, certain Hox genes are known to control cellular identities along the anterior-posterior (A-P) axis in the developing hindbrain. In mouse Hoxa3 mutants, truncation of the glossopharyngeal (IXth) nerve or the fusion of the IXth and vagus (Xth) nerves was reported, although its underlying mechanism is largely unknown. To elucidate the mechanism of the IXth nerve defects, we reexamined the phenotype of Hoxa3 mutant embryos. In Hoxa3 mutants, we observed an abnormal caudal stream of the migrating Hoxa3-expressing neural crest cells at the prospective IXth nerve-forming area. Dorsomedial migration of the placode-derived neuronal precursor cells of the IXth nerve was also affected. Motor neurons at rhombomere 6 (r6), where those of the IXth nerve were positioned, often projected axons to the Xth nerve. In summary, the Hoxa3 gene has crucial roles in ensuring the correct axon projection pattern of all three components of the IXth nerve, i.e., motor neurons and sensory neurons of the proximal and distal ganglia.

Pubmed ID: 11784044 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.