Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta ), a novel PGC-1-related transcription coactivator associated with host cell factor.

Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) plays a critical role in regulating multiple aspects of energy metabolism, including adaptive thermogenesis, mitochondrial biogenesis, and fatty acid beta-oxidation. Recently, this coactivator of nuclear receptors/transcription factors has been shown to control hepatic gluconeogenesis, an important component of the pathogenesis of both type-1 and type-2 diabetes. We described here the cloning of a novel bona fide homologue of PGC-1, PGC-1beta (PGC-1 was renamed as PGC-1alpha), first identified through searches of new data base entries. Despite the fact that PGC-1alpha and -1beta share similar tissue distributions with highest levels of expression in brown fat and heart, their mRNAs are differentially regulated in the brown adipose tissue upon cold exposure and during brown fat cell differentiation. Like PGC-1alpha, PGC-1beta mRNA levels are increased significantly in the liver during fasting, suggesting a possible role for this factor in the regulation of hepatic gluconeogenesis and/or fatty acid oxidation. Consistent with this, PGC-1beta was shown to physically interact and potently coactivate hepatic nuclear factor 4 and peroxisome proliferator-activated receptor alpha, nuclear receptors that are essential for hepatic adaptation to fasting. Finally, using sequence comparisons between PGC-1alpha and -1beta, we have identified a conserved amino acid motif that serves as a docking site for host cell factor, a cellular protein implicated in cell cycle regulation and viral infection. HCF is shown to bind to both PGC-1alpha and -1beta and augment their transcriptional activity.

Pubmed ID: 11733490 RIS Download

Mesh terms: Amino Acid Sequence | Animals | Cell Line | Molecular Sequence Data | RNA, Messenger | Trans-Activators | Transcription Factors

Research resources used in this publication

None found

Research tools detected in this publication

None found

Data used in this publication

None found

Associated grants

  • Agency: NIDDK NIH HHS, Id: R37DK31405

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

We have not found any resources mentioned in this publication.