Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments.

The Journal of cell biology | 2001

The axon initial segment is an excitable membrane highly enriched in voltage-gated sodium channels that integrates neuronal inputs and initiates action potentials. This study identifies Nav1.6 as the voltage-gated sodium channel isoform at mature Purkinje neuron initial segments and reports an essential role for ankyrin-G in coordinating the physiological assembly of Nav1.6, betaIV spectrin, and the L1 cell adhesion molecules (L1 CAMs) neurofascin and NrCAM at initial segments of cerebellar Purkinje neurons. Ankyrin-G and betaIV spectrin appear at axon initial segments by postnatal day 2, whereas L1 CAMs and Nav1.6 are not fully assembled at continuous high density along axon initial segments until postnatal day 9. L1 CAMs and Nav1.6 therefore do not initiate protein assembly at initial segments. betaIV spectrin, Nav1.6, and L1 CAMs are not clustered in adult Purkinje neuron initial segments of mice lacking cerebellar ankyrin-G. These results support the conclusion that ankyrin-G coordinates the physiological assembly of a protein complex containing transmembrane adhesion molecules, voltage-gated sodium channels, and the spectrin membrane skeleton at axon initial segments.

Pubmed ID: 11724816 RIS Download

Research resources used in this publication

None found

Additional research tools detected in this publication

Antibodies used in this publication

None found

Associated grants

None

Publication data is provided by the National Library of Medicine ® and PubMed ®. Data is retrieved from PubMed ® on a weekly schedule. For terms and conditions see the National Library of Medicine Terms and Conditions.

This is a list of tools and resources that we have found mentioned in this publication.


NRCAM (tool)

RRID:SCR_006134

Biomedical technology research center that develops new technologies for modeling cell biological processes. The technologies are integrated through Virtual Cell, a problem-solving environment built on a central database and disseminated as a Web application for the analysis, modeling and simulation of cell biological processes. NRCAM resides at the Center for Cell Analysis and Modeling, CCAM, and provides a vast array of laboratory equipment that can be used for obtaining experimental data needed to create and enhance Virtual Cell models. Microscopy instrumentation includes three confocal laser scanning microscopes including UV excitation, nonlinear optical microscopy utilizing a titanium sapphire pulsed laser, confocal-based fluorescence correlation spectroscopy, wide-field imaging workstation with cooled CCD and rapid excitation filter wheel, and dual-wavelength spectrofluorometer. Access to the facilities and technical staff is open to all researchers.

View all literature mentions