• Register
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.


Leaving Community

Are you sure you want to leave this community? Leaving the community will revoke any permissions you have been granted in this community.


beta-Arrestin-mediated ADP-ribosylation factor 6 activation and beta 2-adrenergic receptor endocytosis.

beta-Arrestins are multifunctional adaptor proteins known to regulate internalization of agonist-stimulated G protein-coupled receptors by linking them to endocytic proteins such as clathrin and AP-2. Here we describe a previously unappreciated mechanism by which beta-arrestin orchestrates the process of receptor endocytosis through the activation of ADP-ribosylation factor 6 (ARF6), a small GTP-binding protein. Involvement of ARF6 in the endocytic process is demonstrated by the ability of GTP-binding defective and GTP hydrolysis-deficient mutants to inhibit internalization of the beta(2)-adrenergic receptor. The importance of regulation of ARF6 function is shown by the ability of the ARF GTPase-activating protein GIT1 to inhibit and of the ARF nucleotide exchange factor, ARNO, to enhance receptor endocytosis. Endogenous beta-arrestin is found in complex with ARNO. Upon agonist stimulation of the receptor, beta-arrestin also interacts with the GDP-liganded form of ARF6, thereby facilitating ARNO-promoted GTP loading and activation of the G protein. Thus, the agonist-driven formation of a complex including beta-arrestin, ARNO, and ARF6 provides a molecular mechanism that explains how the agonist-stimulated receptor recruits a small G protein necessary for the endocytic process and controls its activation.

Pubmed ID: 11533043